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The Propagation Characteristics of Signal
Lines Embedded in a Multilayered
Structure in the Presence of a
Periodically Perforated
Ground Plane

CHI HOU CHAN, MEMBER, IEEE, AND RAJ MITTRA, FELLOW, IEEE

Abstract —The propagation characteristics of waves along a periodic
array of parallel signal lines in a multilayered structure in the presence of a
periodically perforated ground plane are studied in this paper. The surface
current density on the conductors is expressed in terms of a set of rooftop
subdomain basis functions, and Galerkin’s procedure is applied to derive a
matrix eigenvalue equation for the propagation constant in a numerically
efficient manner. The dispersion characteristics of these signal lines are
studied for both the balanced and unbalanced excitations with the relative
permittivities of the various layers as parameters. Numerical results are
presented and compared with available data. Extension of the present
method to treat conductors with finite sheet resistances is also included.

I. INTRODUCTION

LANAR TRANSMISSION lines play an important
role in microelectronic packaging. These transmission
lines are in the form of conductive strips, either laid on or
embedded in a thin planar dielectric with or without
conducting ground planes. The conducting ground planes
are often perforated to allow connections of transmission
lines located at different separations from the ground
planes through a via [1] or because other manufacturing
considerations dictate the use of such ground planes.
Analyses of various planar transmission lines have been
successfully carried out in the spectral domain by Itoh and
Mittra [2] and Itoh [3]. A simplified version of this ap-
proach, known as the spectral-domain immittance ap-
proach, has been derived by Itoh [4] and employed by
several other authors [5], [6]. When the planar transmission
lines have constant widths and are infinitely long, the
unknown current distribution across the width of the strip
can be conveniently expanded in terms of a set of entire
domain basis functions. However, when an additional set
of orthogonal lines is introduced into the system, or when
the ground plane is perforated, the choice of entire domain
basis functions is no longer obvious, or even convenient.
Recently, waves guided by conductive strips in a mesh-
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plane environment have been analyzed by Rubin and
Bertoni using subdomain basis functions [7], [8].

In [7] and [8], the current distributions on the conduct-
ing strips and the ground mesh are expanded in terms of a
set of rooftop basis functions and the boundary condition
is satisfied in an integral sense by testing the resulting
equation with the so-called razor-blade function. Recently,
Chan and Mittra [9] have shown that the Galerkin testing
procedure provides a more numerically efficient solution
than that obtained by using the razor blade.

In contrast to the homogeneously filled transmission
lines discussed in [7] and [8], the propagation characteris-
tics of signal lines embedded in a multilayered dielectric
medium in the presence of a perforated ground plane are
studied in this paper. The multilayered configuration is a
more realistic representation of structures used in micro-
electronic packaging since, typically, the transmission line
and the perforated ground plane are supported by a thin
dielectric and are separated from other transmission struc-
tures by a layer of air or other dielectric. To analyze this
structure, the spectral-domain immittance approach is em-
ployed to derive the Green’s function. The boundary con-
dition is then enforced in conjunction with the Galerkin
procedure, leading to an eigenvalue problem which is
solved by the Newton—Raphson algorithm. The dispersion
characteristic of the structure is calculated for different
values of dielectric constants and is compared with results
in [7]. Although the present paper also includes discussions
on the imperfect conductor case, no numerical results are
provided as our primary objective is to study the multi-
layered effect on the dispersion characteristics.

II. DERIVATION OF THE GREEN’S FUNCTION

The structure considered in this paper is depicted in Fig.
1. The ground plane, located at y =0, is perforated with
rectangular apertures; the signal lines are situated at a
height ¢. All conductors are infinitely thin and have a
finite sheet resistance R . Unlike the structure described in
[7], the supporting medium is inhomogeneous and is di-
vided into three stratified regions. Region II is the center
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Fig. 1. Array of signal lines above a periodic ground plane supported

by a dielectric slab. (a) Isometric view. (b) Unit cell. (c) End view.

region separating the signal lines and the perforated ground
plane; regions I and III are the semi-finite regions above
the signal lines and below the perforated ground plane,
respectively. The spectral Green’s function for analyzing
this structure can be obtained readily by the spectral-
domain immitance approach.

The details of using the spectral-domain immitance ap-
proach for deriving the spectral Green’s functions of
printed transmission lines can be found in [4]; hence, only
the final results of the spectral Green’s function for the
present problem are included.

Following the notations in [4] and denoting the surface
current densities on the signal lines and the perforated
ground plane as J! and J! and J? and J?, respectively,
the relation between the current densities and the trans-
verse (to y) components of the electric field in the spectral
domain is given as

zn 7w 22 ze|[n] [&
zpoznozeoze || |E
7z 72 22|\ 2|8
zm o7 72 ||| |8

The matrix elements are defined as

Zy=(N2Z; + N2ZE) (2)

Zy = (N2Ze+ N22k) 3)

Zy=2Z4=NN,(Ze-28),  ij=12. (4)
The quantities Z¢"’s read

. 1

Zfl’h = W (5)

Zeh— 1 Yanmo, tea /sSinhy,t ©)

Yha st vph+ Yruo te2C0thy,t
Zsih = 2

()
(8)
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Fig. 2. Signal lines and perforated ground plane embedded in a multi-
layered dielectric medium,

where
Y =Yrm te1 (9)
Y&t =Y. Yz ez + Y5 eothy,t (10)
2L T™TE Yk Ly othyr
Yyh= TM3,TE3 (11)
yeh—y. Yo re, + Y1 cothy,t 12)
B THRTELYER 4+ Vi, pacoth v,
— Jwege
Yru, = e (13)
Y,
-,
Yop, = — 14
TE: jw,u ( )
[44
Ne="—""357 (15)
(1)
B
N = 3 (16)
(a®+87%)
and

v, =y’ + B — k2, (17)

The quantities a@ and B are the transform variables with
respect to the x and z directions, respectively, and will be
defined later. The matrix Z is the designated spectral
Green’s tensor for the present problem. Modifications to
include additional stratified layers are readily available
using the transfer matrix method described in [10] and
[11].

A general structure of signal lines and perforated ground
plane embedded in a multilayered structure is depicted in
Fig. 2. To include the effects of the dielectric layers both
above and below the perforated ground plane, we can
follow the procedure discussed in [10] and [11] and modify
(9) and (11). The details of this procedure are omitted
here; however, the modifications of the spectral Green’s
tensor due to the presence of the multilayered dielectrics
sandwiched between the signal line plane and the perfo-
rated ground plane are discussed below in some detail.

i=1,2,3.
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We denote the Fourier transform of the tangential
scattered electric field and the current densities on the
bottom surface of the signal line plane and the top surface
of the perforated ground plane by E; and J7, and E
and J;", respectively. This is illustrated in Fig. 2. Next, we
assume that the TE and TM modes have already been
decoupled via a coordinate transformation. The subscripts
v and u, designating the TM and TE modes as discussed in
[4], are suppressed here for simplicity of notation. The
tangential scattered electric fields due to the surface cur-
rent densities are given as

E+ n E‘
l:fi}= H[Tz('YZzalZz)][jl_} (18)

2 =1 1

where

[Tt('qu f21)] = {

coshy, t,, Y53,' sinhyzltzl] (19)

Y,, sinhy,,t,, coshy,,1,,

Equation (19) can be rewritten as

["i{ } _ [ [Efj } 0
J; ayn dn 1
or
[ENI } _ {an am]l: [bu b1, E2+ (21)
Ji dy dp by by |l

The boundary conditions governing (20) and (21) read

Et=F =E (22)

Jr=Y'E (23)
and

J =-YE. (24)

After some simple manipulations, one obtains

-

i v+ by b bybyy |-t 7
1 1 b —Yn b 1
_ 12 12
~ andn ay _ -
E, dyn — Y, J,
ay; Y

- . (25)

Y," and Y, are the input admittances looking upward
from the signal lines and downward from the perforated
ground plane in an equivalent transmission line model,
respectively. These quantities can be constructed easily
following the procedures discussed in [10] and [11]. Al-
though the two off-diagonal terms in (25) take a different
form, it can be shown that they are nontheless equivalent.

To include the effects of the dielectric layers between the
signal line plane and the perforated ground plane, (5) to
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layers of dielectrics

(8) are replaced by

[Zﬁ”
Z5"
with ¥{", ¥;, and Y), replaced by Yy 181, Y1umo,te2» and
Y12, TE2,» Tespectively. Using the coordinate transforma-
tion given in (2) to (4), a matrix equation similar to (1) for
a general multilayered structure can be obtained. If the
number of dielectric layers between the signal line plane
and the perforated ground plane is small, e.g., one or two,
we can derive analytical expressions for the elements of the
matrix in (26). As an example, we present below the
expressions for the elements of the Green’s tensor for the
structure shown in Fig. 3.

The above structure has two dielectric layers between
the signal line plane and the perforated ground plane. The
Green’s function tensor is very similar to the one for the
structure shown in Fig. 1 except that the quantities Y5;”
and Y3;" are replaced by

e, h
Z12

e, h
222

Cll
C21

Ci
C22

(26)

e, h
Ye,h =Y. Y'3 Cl + YTM22,TE22C2
2L = LTM21,TE2L "oeh,
Y s
3

(27)

+ YTM 22,TE 22C2

and
h
yeh—y Y'G+ Yoo e G (28)
20 = LT™M22, TE22 T
“ Yo" + Yomor, tenCr
where
Yoy en + Y35 Peothyy ry
Cl— Ye,h+Ye,h (29)
21 22
C. = Ymor, 1821 €0t ¥y fp + Yiug T COth vy (30)
: Y5k + Y5t
_ Yomon, tean + Y5y "cothyyt,, (31)
3 Y2e2, h + Yv.’lel‘ h

(32)

e h
Y50 " = Yrmor tez cothyy fy

and
(33)

The Green’s function tensor can be generated numerically
using (19), (20), and (25) when the number of dielectrics
between the signal line plane and the perforated ground
plane exceeds two layers.

e h _
Y53 " = Yrvmoz, 122 €0th vy 055
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II1.

In general, the current distribution on a periodic struc-
ture shown in Fig. 1 is not periodic unless the excitation is
also periodic. For example, if we assume that all the
currents on the strips are identical and that they flow in
the same direction (unbalanced excitation), we can insert a
magnetic wall midway between two adjacent strips without
disturbing the fields. Alternatively, if the excitation is such
that the currents on two adjacent strips flow in opposite
directions (balanced excitation), an electric wall can be
inserted between the strips without disturbing the fields.
Under these excitation conditions, we can identify a unit
cell, as depicted in Fig. 1(b), for the structure under
investigation. The periodicities of the unit cell in the x and
z directions are denoted by 4, and d,, respectively. The
Fourier transform variables « and 8 are then defined as

(34)

FORMULATION OF THE EIGENVALUE PROBLEM

27m

d

=m Aa

o=

X

and

27n
,8=—d—‘+kz=nAﬁ+kz
where k, is the propagation constant of the signal line.
The current density J, within the unit cell is approxi-
mated as a linear combination of x- and z-directed rooftop
functions. The details of this discretization procedure can
be found in [7]-[9] and will be omitted here. The trans-
verse component of the electric field E is expressed in
terms of the current density J by the inverse Fourier
transform given by (1). The electrrc field boundary condi-
tion on the unit cell that includes both the signal line and
the perforated ground plane reads ’

E,~R,J,=0. (36)

Denoting the complex current coefficients of the rooftop
functions as I2 and applying the Galerkin procedure, we
obtain a determrnantal equation which reads

(35)

z

Gl Gn G GI||I 0
Gll Gll G12 G12 Il 0
G | d o B AE)
GZZ GZX GZZ sz IZ 0
G G G GRY|1}] |0

Each of the G’s is a submatrix which contains the follow-
ing elements:

o] [e ]
Iy I - [a(v —xq)+ﬁ(z -z
GIl(k,l)= ¥ ¥ ZFRRie “
m=—o0 n=—0w
kI
+ R FH (38)
w | [RERY ds, I=J=12p=q=x,2
ﬁ;’q B f N
0, otherwise.

(39)

R , denotes the Fourier transform of a g-directed rooftop
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Fig. 4. Signal lines under balanced excitation. (a) Uit cell. (b) Current
representation for J, in the x direction.

function centered at the origin whereas R’q denotes a
g-directed rooftop function centered at x and z . As we
will discuss in the next section, R, can also represent a
half-rooftop function. The expressron for F;,’;’, obtained
after carrying out the integral in (39), can be found in [9]
and is omitted here.

The doubly infinite summation, which appears in (38),
has the following asymptotic behavior: for I = J,

1
202 (m*+n

N (40)
however, if the razor blade testing function [7] is used, we
have

1
mn(m?+ n?)

When I# J, both (40) and (41) are multiplied with an
extra decaying factor of 1/sinh(y,t). These asymptotic
behaviors indicate that the doubly infinite summation con-
verges much more rapidly when the Galerkin testing pro-
cedure is used in place of razor blade testing. The un-
known k_ in the determinantal equation in (37) is solved
iteratively using the Newton~Raphson procedure. For each
iteration, the matrix elements are calculated anew. As a
result, a significant reduction in computer time can be
achieved by using the Galerkin testing procedure. Further
reduction can be obtained by a summation technique using
the fast Fourier transform (FFT) algorithm. This tech-
nique has been discussed in [9] and is omitted here.

(41)

12"

IV. BALANCED AND UNBALANCED EXCITATIONS OF
THE SIGNAL LINES

As mentioned earlier, excitations on the signal lines
determine the choice of electric or magnetic walls that can
be inserted midway between two adjacent lines without
disturbing the fields. Fig. 4(a) depicts a balanced excita-
tion on which the unit cell has two electric sidewalls. The
x-directed current elements are nonzero at the electric
walls. Furthermore, by invoking symmetry, a magnetic
wall can be inserted midway between the two electric
walls. The x-directed current elements, however, are zero
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Fig. §.

at the magnetic wall. Thus, the right half of a rooftop
function, as show in Fig. 4(b), must be used to correctly
represent the current density J_. For an unbalanced excita-
tion, the electric walls are replaced by the magnetic ones.

Fig. 5(a) depicts the unit cell with magnetic sidewalls
under unbalanced excitation and Fig. 5(b) shows the cur-
rent representation for J.. In both the balanced and unbal-
anced excitations, J, are continuous and not necessarily
zero at the boundaries of the unit cell in the z direction;
hence they are represented by half-rooftop functions.
However, due to the periodicity in the z direction, the two
half-rooftop functions at the two boundaries have equal
amplitudes and a phase shift of e #%:. As a result, these
two half-rooftop functions can be combined to form a
single rooftop [7].

Side-by-side coupling between two adjacent signal lines
is also investigated in this paper. Fig. 6 shows the geome-
try of a pair of coupled lines, derived by removing every
third line of the structure in Fig. 1. Again, we limit our
discussion to the balanced and unbalanced excitations. For
the balanced case, the unit cell is enclosed by two electric
side walls. The current flowing in the two signal lines
within the unit cell are equal in magnitude and opposite in
direction. As a result, an electric wall can be introduced
midway between the two signal lines; hence, the problem
is reduced to that of solving a single line enclosed by two
electric walls with a slight modification on the matrix
elements in (37). Similarly, for the unbalanced excitation,
the problem reduces to a single line enclosed by two
magnetic walls.

In order to modify the matrix elements in (37) that
account for the even and odd symmetries of the structures,
we first study the matrix equation in (1). The amplitudes
of the current elements are either evenly symmetric or
oddly symmetric about the y—z plane. As a result, the
matrix can be reduced to one quarter of its original size by
invoking these symimetries. Furthermore, it can be shown
that when p # ¢, the element ZIf{I has an odd symmetry
about a= 0 in the spectral domain; otherwise, it has an
even symmetry. In view of this, the doubly infinite summa-
tion appearing in (38) for calculating the matrix element
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GIZ can be rewritten as

R (N S
4AaAp Z {EZ;{Ifl(a)R;‘e jdxpia=0
n=-—0o0
+ L ZE(@h(0)e 20 (@)
m=1
where
Real | R e/ even symmetry
filax) = { ! }

Jj Imaginary {ﬁ qef"‘xé} odd symmetry

(43)
and
Real { Rl’j‘e"”‘l5 }
even symmetry, p = q;

or odd symmetry, p # g

flax) = (44)

J Imaginary {ﬁ ;‘e‘f“"zf }
even symmetry, p # ¢,
or odd symmetry, p =gq.

The determinantal equation of (37) may be solved either
by using the modified matrix elements given in (42) or by
working with the expressions for these elements in their
original forms. When symmetry of the structure is invoked,
the matrix size is reduced to about one-fourth of its
original size, although more CPU time is needed to evaluate
the matrix elements. On a vector machine, e.g., the Cray
X-MP /48, it is faster to solve the eigenvalue problem
without invoking the symmetry of the structure. This is
due to the fact that once the symmetry is invoked, the
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Fig. 7. Current distribution in the signal liie and the ground plane over
half of the unit cell of the structure shown in Fig. 1 under unbalanced
excitation. (R, =0, w=025cm, a=5b=0.75 cm, d,=d, =10 cm,
ko =0000l cm™!, N=8, M=16, ¢,,=¢,, =¢,;=1)

computer code to evaluate the matrix elements is not
vectorizable and, hence, required a longer execution time.

The dispersion characteristics of signal lines over a
perforated ground plane in a multilayered medium are
presented in the next section.

V. NUMERICAL RESULTS

The eigenvalue problem of (37) is solved by the
Newton—Raphson iteration procedure. The criteria to
terminate the iteration procedure are the same as those
adopted in [7]. The doubly infinite series appearing in (38)
and (42), as consequences of the Galerkin testing proce-
dure, are truncated according to

z X

M= 4
2Ax (45)

as opposed to M = d  /Ax used in [7] when the razor blade
testing is used. To examine the effect of the testing func-
tion on the eigenvalue solution, we first consider the effect
on the current distribution by using the Galerkin testing
procedure as opposed to the razor blade testing.

Fig. 7 shows the current distribution in the structure of
Fig. 1 under unbalanced excitation when the Galerkin
testing procedure is employed. In general, the surface
current density follows a distribution similar to the one
shown in [7, fig. 5], where razor blade testing is used.

Fig. 8 shows the dispersion characteristics of the struc-
ture shown in Fig. 1 with all the dielectric constants equal
to unity. For k, less than 1 cm~!, the balanced and
unbalanced modes have similar propagation constants and
are both close to the TEM mode propagation. When & is
greater than 1 cm ™1, the balanced and unbalanced modes
begin to have different dispersion characteristics and even-
tually cut off at different wavenumbers.

Fig. 9 shows the dispersion characteristics of the struc-
ture in Fig. 1 with ¢, =¢;=1 and ¢, =10. Both the bal-
anced and unbalanced modes are very different from the
TEM mode propagation for k, greater than 0.1. The two
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dispersion curves intersect at about ky,=0.7 cm~!. The
cutoff wavenumbers of both modes are much lower than
those when the dielectric is replaced by air.

The structure shown in Fig. 1, with ¢, =€, =€; =1 and
every other signal line removed, has been studied by Rubin
and Bertoni [7] and the dispersion characteristic has been
shown in [7, fig. 8]. Apparently, the scale of the ordinate
axis in that figure is incorrect between k,=2, and 3.
Instead of reproducing the dispersion curve for the same
structure, Fig. 10 shows the dispersion characteristic for
¢, =10. Both the balanced and unbalanced modes are very
different from the TEM propagation at the frequency
range of interest.

Fig. 11 shows the dispersion characteristic of the struc-
ture shown in Fig. 3. This structure consists of two dielec-
tric layers with €,; =10 and ¢,, =4 while the total thick-
ness of the dielectric regions remains the same as in the
structure shown in Fig. 1. We observe that the cutoff
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——-— balanced excitation; unbalanced excitation (R, =0, w=
025cm, a=b=075cm, d,=d,=1.0cm, N=8, M =16, ¢,; =¢,3=
1, €,5;, =10, €5, =4, t;; =04 cm, 15, =01 cm.)

wavenumbers for the balanced and unbalanced modes are
higher than those shown in Fig. 9. We also note that more
eigenvalues can be found for (37) for higher operating
frequency after the balanced or unbalanced modes are cut
off. These eigenvalues correspond to the higher order
propagating modes and need further investigation.

Side-by-side coupling between two adjacent signal lines
depicted in Fig. 6 has been studied and the results in terms
of coupling length are tabulated in Table I. Good agree-
ment with the results from Rubin and Bertoni [7] is
obtained.

VI. CONCLUSIONS

The dispersion characteristics of parallel signal lines
embedded in a multilayered structure in the presence of a
periodically perforated ground plane have been analyzed.
In this analysis, the spectral Green’s function tensor is
derived using the spectral-domain immitance approach in
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TABLE I
NORMALIZED COUPLING LENGTH AT k¢ = 0.001 cM
k,/ k
z 0 Ak, I ko[ 17
leven mode{odd mode
Razor-blade testing [7] | 1.0420 | 1.0039 | 0.0381 | 1312
(@)
Galerkin testing 1.0407 | 1.0040 | 00367 | 1362
(b) 25544 | 2.3032 | 0.2512 | 1.99

Unit cell of Fig. 6 (a) In free space. (b) Signal lines and perforated
ground plane are supported by two-layered dielectric as shown in Fig. 3.
€1 =¢3=1, €5, =10, €, =4, £,y =04 cm, and 15, = 0.1 cm.

conjunction with the transfer matrix method to account
for the multilayered medium. Rooftop basis functions and
Galerkin testing procedures are employed, resulting in
rapidly convergent, doubly infinite series for the eigen-
value problem which determines the propagation constant
of the structure. It has been shown that the dispersion
characteristics, as well as the cutoff wavenumbers, for both
the balanced and unbalanced excitations of the signal lines
strongly depend on the dielectric materials which support
the signal lines and the perforated ground plane.
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