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The Propagation Characteristics of Signal
Lines Embedded in a Multilayered

Structure in the Presence of a
Periodically Perforated

Ground Plane

CHI HOU CHAN, MEMBER, IEEE, AND RAJ MITTRA, FELLOW, IEEE

AMswct —The propagation characteristics of waves afong a periodic

array of parallel signal lines in a multilayered structure in the presence of a

periodically perforated ground plane are studied in this paper. The surface

current density on the conductors is expressed in terms of a set of rooftop

subdomain basis functions, and Galerkin’s procedure is applied to derive a

matrix eigenvalue equation for the propagation constant in a numerically

efficient manner. The dkpersion characteristics of these signal lines are

studied for both the bafanced and unbalanced excitations with the relative

permittivities of the various layers as parameters. NumericaI results are

presented and compared with available data. Extension of the present

method to treat conductors with finite sheet resistances is also included.

L INTRODUCTION

P LANAR TRANSMISSION lines play an important

role in microelectronic packaging. These transmission

lines are in the form of conductive strips, either laid on or

embedded in a thin planar dielectric with or without

conducting ground planes. The conducting ground planes

are often perforated to allow connections of transmission

lines located at different separations from the ground

planes through a via [1] or because other manufacturing

considerations dictate the use of such ground planes.

Analyses of various planar transmission lines have been

successfully carried out in the spectral domain by Itoh and

Mittra [2] and Itoh [3]. A simplified version of this ap-

proach, known as the spectral-domain immittance ap-

proach, has been derived by Itoh [4] and employed by

several other authors [5], [6]. When the planar transmission

lines have constant widths and are infinitely long, the

unknown current distribution across the width of the strip

can be conveniently expanded in terms of a set of entire

domain basis functions. However, when an additional set

of orthogonal lines is introduced into the system, or when

the ground plane is perforated, the choice of entire domain

basis functions is no longer obvious, or even convenient.

Recently, waves guided by conductive strips in a mesh-
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plane environment have been analyzed by Rubin and

Bertoni using subdomain basis functions [7], [8].

In [7] and [8], the current distributions on the conduct-

ing strips and the ground mesh are expanded in terms of a

set of rooftop basis functions and the boundary condition

is satisfied in an integral sense by testing the resulting

equation with the so-called razor-blade function. Recently,

Chan and Mittra [9] have shown that the Galerkin testing

procedure provides a more numerically efficient solution

than that obtained by using the razor blade.

In contrast to the homogeneously filled transmission

lines discussed in [7] and [8], the propagation characteris-

tics of signal lines embedded in a multilayered dielectric

medium in the presence of a perforated ground plane are

studied in this paper. The multilayered configuration is a

more realistic representation of structures used in micro-

electronic packaging since, typically, the transmission line

and the perforated ground plane are supported by a thin

dielectric and are separated from other transmission struc-

tures by a layer of air or other dielectric. To analyze this

structure, the spectral-domain immittance approach is em-

ployed to derive the Green’s function. The boundary con-

dition is then enforced in conjunction with the Galerkin

procedure, leading to an eigenvalue problem which is

solved by the Newton–Raphson algorithm. The dispersion

characteristic of the structure is calculated for different

values of dielectric constants and is compared with results

in [7]. Although the present paper also includes discussions

on the imperfect conductor case, no numerical results are

provided as our primary objective is to study the multi-

layered effect on the dispersion characteristics.

II. DERIVATION OF THE GREEN’S FUNCTION

The structure considered in this paper is depicted in Fig.

1. The ground plane, located at y = O, is perforated with

rectangular apertures; the signal lines are situated at a

height t. All conductors are infinitely thin and have a

finite sheet resistance R,. Unlike the structure described in

[7], the supporting medium is inhomogeneous and is di-

vided into three stratified regions. Region II is the center
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Fig. 1. Array of signal lines above a periodic ground plane supported
by a dielectric slab. (a) Isometric view. (b) Unit cell. (c) End view.

region separating the signal lines and the perforated ground

plane; regions I and III are the semi-finite regions above

the signal lines and below the perforated ground plane,

respectively. The spectral Green’s function for analyzing

this structure can be obtained readily by the spectral-

domain immitance approach.

The details of using the spectral-domain immitance ap-

proach for deriving the spectral Green’s functions of

printed transmission lines can be found in [4]; hence, only

the final results of the spectral Green’s function for the

present problem are included.

Following the notations in [4] and denoting the surface

current densities on the signal lines and the perforated

ground plane as .JJ and .Ij and J; and .Tj, respectively,

the relation between the current densities and the trans-

verse (to y) components of the electric field in the spectral

domain is given as

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)
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Fig. 2. Signaf lines and perforated ground plane embedded in a multi-
layered dielectric m:dium

where

Yf’h = YTM1 TE1

YTM2 TE2 + Y; ’hcothy2t
y;~h = Y

‘M2’TE2 ‘;’h + ‘rM2,TE2c0th?’2t

Y;’h = YTM3,TE3

YTM2,TE;L+ Y~’hcothy2t
y~ik = Y

‘M2’TE2 Y:>h + YTM2,TE2cothy2t

– j(dqf,
Y7-,!42 =

Y,

– 1’,
Y—TEz =

Jti/1

Nx =
(a2 +;2)’/2

N= z
P

(e#+/32)2

and

y,={a2+/32-ek2
l? i=l,2,3,

(9)

(lo)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

The quantities a and ~ are the transform variables with

respect to the x and z directions, respectively, and will be

defined later. The matrix ~ is the designated spectral

Green’s tensor for the present problem. Modifications to

include additional stratified layers are readily available

using the transfer matrix method described in [10] and

[11].

A general structure of signal lines and perforated ground

plane embedded in a multilayered structure is depicted in

Fig. 2. To include the effects of the dielectric layers both

above and below the perforated ground plane, we can
follow the procedure discussed in [10] and [11] and modify

(9) and (11). The details of this procedure are omitted

here; however, the modifications of the spectral Green’s

tensor due to the presence of the multilayered dielectrics

sandwiched between the signal line plane and the perfo-

rated ground plane are discussed below in some detail.
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We denote the Fourier transform of the tangential

scattered electric field and the current densities on the

bottom surface of the signal line plane and the top surface

of the perforated ground plane by -l?I– and Ji–, and @
and J?, respectively. This is illustrated in Fig. 2. Next, we

assume that the TE and TM modes have already been

decoupled via a coordinate transformation. The subscripts

u and u, designating the TM and TE modes as discussed in

[4], are suppressed here for simplicity of notation. The

tangential scattered electric fields due to the surface cur-

rent densities are given as

where

Equation (19) can be rewritten as

or

The boundary conditions governing (20) and (21) read

j+=~-=~ (22)

j+= y+~ (23)

and

j-= – y-~. (24)

After some simple manipulations, one obtains

HIEl y+ —
b 12——

a11a22
172 a21— —

a12

b22b11
b21 + —

b 12

a 22
— + Y2-
a12

Y; and Y; are the input admittances looking upward

from the signal lines and downward from the perforated

ground plane in an equivalent transmission line model,

respectively. These quantities can be constructed easily

following the procedures discussed in [10] and [11]. Al-

though the two off-diagonal terms in (25) take a different

form, it can be shown that they are nonetheless equivalent.

To include the effects of the dielectric layers between the

signal line plane and the perforated ground plane, (5) to

Perforated 122 E22 .4

Ground
Plane Atr

Fig. 3. Signal lines and perforated ground plane supported by two
layers of dielectrics

(8) are replaced by

with Yl+, Yz–, and Y2~replaced by YIMI,TE1, ‘;M2, TE> and

Y ~M2z ~E21, respectively. Using the coordinate transforma-

tion given in (2) to (4), a matrix equation similar to (1) for

a general multilayered structure can be obtained. If the

number of dielectric layers between the signal line plane

and the perforated ground plane is small, e.g., one or two,

we can derive analytical expressions for the elements of the

matrix in (26). As an example, we present below the

expressions for the elements of the Green’s tensor for the

structure shown in Fig. 3.

The above structure has two dielectric layers between

the signal line plane and the perforated ground plane. The

Green’s function tensor is very similar to the one for the

structure shown in Fig. 1 except that the quantities Y:~h

and Y:~h are replaced by

Y;’ ‘Cl + YTM22,TE22C2

‘;~h = ‘TM 21, TE 21
‘;’ h + ‘TM29 TE22C2

(27]
->

and

Y;’ hc3 + YTM21,TE21C2

Y;;h = YTM22,TE22
v’ h + YTM21,TE21C1

(28)

where

(29)

C2 =
YTM21, TE21 Coth Y22~22 + yTM22. TE22coth Y21t21

Y;~ h + Y;~ h
(30)

q = YTM22, TE22 + H “CothY2212z

Y~~h + Y~i h
(31)

y;ih=y
TM21, TE21coth Y21t21 (32)

and

y~h=y
TM22. TE22 @hY22f22 . (33)

The Green’s function tensor can be generated numerically

using (19), (20), and (25) when the number of dielectrics

between the signal line plane and the perforated ground

dane exceeds two lavers.
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111. FORMULATION OF THE EIGENVALUE PROBLEM

In general, the current distribution on a periodic struc-

ture shown in Fig. 1 is not periodic unless the excitation is

also periodic. For example, if we assume that all the

currents on the strips are identical and that they flow in

the same direction (unbalanced excitation), we can insert a

magnetic wall midway between two adj scent strips without

disturbing the fields. Alternatively, if the excitation is such

that the currents on two adjacent strips flow in opposite

directions (balanced excitation), an electric wall can be

inserted between the strips without disturbing the fields.

Under these excitation conditions, we can identify a unit

cell, as depicted in Fig. l(b), for the structure under

investigation. The periodicities of the unit cell in the x and

z directions are denoted by dX and d,, respectively. The

Fourier transform variables a and /3 are then defined as

277m
~= —= mAa

dX

and

277n
p=T +kZ=n A~+kz

z

(34)

(35)

where k= is the propagation constant of the signal line.

The current density J: within the unit cell is approxi-

mated as a linear combination of x- and z-directed rooftop

functions. The details of this discretization procedure can

be found in [7]–[9] and will be omitted+ here. The trans-

verse component of the electric field Et is expressed in

terms of the current density J: by the inverse Fourier

transform given by (l). The electric field boundary condi-

tion on the unit cell that includes both the signal line and

the perforated ground plane reads

&R,~=O. (36)

Denoting the complex current coefficients of the rooftop

functions as 1~’~ and applying the Galerkin procedure, we

obtain a deter&nantal equation which reads

Each of the G‘s is a submatrix which contains the follow-

ing elements:

qi$ = (JR: Rplds, I= J=1,2; p=q=x, z

0; otherwise.

(39)

A ~ denotes the Fourier transform of a q-directed rooftop
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Fig. 4. Signal lines under balanced excitation. (a) Unit cell. (b) Current
representation for {z in the x direction.

function centered at the origin whereas R: denotes a

q-directed rooftop function centered at x: and z:. As we

will discuss in the next section, R ~ can also represent a

half-rooftop function. The expression for Fp~, obtained

after carrying out the integral in (39), can be found in [9]

and is omitted here.

The doubly infinite summation, which appears in (38),

has the following asymptotic behawior: for 1 = J,

1

m2n2(m2+n2)1’2
(40)

however, if the razor blade testing function [7] is used, we

have

1
(41)

mn(m2+n2)1’2”

When 1 # J, both (40) and (41) are multiplied with an

extra decaying factor of l/sinh (y2t ). These asymptotic

behaviors indicate that the doubly infinite summation con-

verges much more rapidly when the Galerkin testing pro-

cedure is used in place of razor blade testing. The un-

known k: in the deterrninantal equation in (37) is solved

iteratively using the Newton–Rap hson procedure. For each

iteration, the matrix elements are calculated anew. As a

result, a significant reduction in computer time can be

achieved by using the Galerkin testing procedure. Further

reduction can be obtained by a summation technique using

the fast Fourier transform (FFr) algorithm. This tech-

nique has been discussed in [9] and is omitted here.

IV. BALANCED AND UNBALANCED EXCITATIONS OF

THE SIGNAL 1.INES

As mentioned earlier, excitations on the signal lines

determine the choice of electric or magnetic walls that can

be inserted midway between two adjacent lines without

disturbing the fields. Fig. 4(a) dspicts a balanced excita-
tion on which the unit cell has two electric sidewalls. The

x-directed current elements are nonzero at the electric

walls. Furthermore, by invoking symmetry, a magnetic

wall can be inserted midway between the two electric

walls. The x-directed current elements, however, are zero
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Fig. 5. Signal lines under unbalanced excitation (a) Unit cell. (b)
Current representation for .JXin the x direction.

at the magnetic wall. Thus, the right half of a rooftop

function, as show in Fig. 4(b), must be used to correctly

represent the current density JX. For an unbalanced excita-

tion, the electric walls are replaced by the magnetic ones.

Fig. 5(a) depicts the unit cell with magnetic sidewalls

under unbalanced excitation and Fig. 5(b) shows the cur-

rent representation for .lX. In both the balanced and unbal-

anced excitations, J= are continuous and not necessarily

zero at the boundaries of the unit cell in the z direction;

hence they are represented by half-rooftop functions.

However, due to the periodicity in the z direction, the two

half-rooftop functions at the two boundaries have equal

amplitudes and a phase shift of e ‘J~d’. As a result, these

two half-rooftop functions can be combined to form a

single rooftop [7].

Side-by-side coupling between two adjacent signal lines

is also investigated in this paper. Fig. 6 shows the geome-

try of a pair of coupled lines, derived by removing every

third line of the structure in Fig. 1. Again, we limit our

discussion to the balanced and unbalanced excitations. For

the balanced case, the unit cell is enclosed by two electric

side walls. The current flowing in the two signal lines

within the unit cell are equal in magnitude and opposite in

direction. As a result, an electric wall can be introduced

midway between the two signal lines; hence, the problem

is reduced to that of solving a single line enclosed by two

electric walls with a slight modification on the matrix

elements in (37). Similarly, for the unbalanced excitation,

the problem reduces to a single line enclosed by two
magnetic wall~.

In order to modify the matrix elements in (37) that

account for the even and odd symmetries of the structures,

we first study the matrix equation in (l). The amplitudes

of the current elements are either evenly symmetric or

oddly symmetric about the y – z plane. As a result, the

matrix can be reduced to one quarter of its original size by

invoking these symmetries. Furthermore, it can be shown

that when p # q, the element Z; has an odd symmetry

about a = O in the spectral domain; otherwise, it has an

even symmetry. In view of this, the doubly infinite summa-

tion appearing in (38) for calculating the matrix element

. signal Line
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Fig. 6. Side-by-side coupled signal line. (a) Isometric view. (b) Unit cell
with appropriate boundary conditions.

G ‘J can be rewritten as
Pq

(Real { X qeJax$ ) even symmetry
f,(sxx) =

j Imaginary { fiqe’”x~ ) odd symmetry

(43)

and

I

Real ( RjeJax~ )

even symmetry, p = q;

f,(cix) =

I

or odd symmetry, p # q
(44)

j Imaginary ( fi~e-J”x~ }

I even symmetry, p # q;

or odd symmetry, p = q.

The determinantal equation of (37) may be solved either

by using the modified matrix elements given iri (42) or by

working with the expressions for these elements in their

original forms. When symmetry of the structure is invoked,

the matrix size is reduced to about one-fourth of its

original size, although more CPU time is needed to evaluate

the matrix elements. On a vector machine, e.g., the Cray

X-MP/48, it is faster to solve the eigenvalue problem

without invoking the symmetry of the structure. This is

due to the fact that once the symmetry is invoked, the
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Fig. 7. Current distribution in the signal line and the ground plane over

half of the unit cell of the structure shown in Fig. 1 under unbalanced

excitation. (R$ = O, w = 0.25 cm, a = b = 0.75 cm, dl = dz =1.0 cm,
k. = 0.0001 cm-l, N=8, M=16, 6,1= C,J= C,3=1.)

computer code to evaluate the matrix elements is not

vectorizable and, hence, required a longer execution time.

The dispersion characteristics of signal lines over a

perforated ground plane in a multilayered medium are

presented in the next section.

V. NUMERICAL RESULTS

The eigenvalue problem of (37) is solved by the

Newton–Raphson iteration procedure. The criteria to

terminate the iteration procedure are the same as those

adopted in [7]. The doubly infinite series appearing in (38)

and (42), as consequences of the Galerkin testing proce-

dure, are truncated according to

dX
N=$ M=—

2 Ax
(45)

as opposed to M = dX \Ax used in [7] when the razor blade

testing is used. To examine the effect of the testing func-

tion on the eigenvalue solution, we first consider the effect

on the current distribution by using the Galerkin testing

procedure as opposed to the razor blade testing.

Fig. 7 shows the current distribution in the structure of

Fig. 1 under unbalanced excitation when the Galerkin

testing procedure is employed. In general, the surface

current density follows a distribution similar to the one

shown in [7, fig. 5], where razor blade testing is used.

Fig. 8 shows the dispersion characteristics of the struc-

ture shown in Fig. 1 with all the dielectric constants equal

to unity. For kO less than 1 cm-1, the balanced and

unbalanced modes have similar propagation constants and

are both close to the TEM mode propagation. When kO is

greater than 1 cm- 1, the balanced and unbalanced modes
begin to have different dispersion characteristics and even-

tually cut off at different wavenumbers.
Fig. 9 shows the dispersion characteristics of the struc-

ture in Fig. 1 with c1 = C3= 1 and c~ = 10. Both the bal-

anced and unbalanced modes are very different from the

TEM mode propagation for k. greater than 0.1. The two

2.5 I 1 I I I 1

/“’--

2.0 -

1.5 /.’6 i

-‘/

/
/

/
/

I .0

0.5

propagation wave number kz(cm-l~

Fig. 8. Dispersion characteristics of t he structure shown in Fig. 1.

–––– balanced excitation; — unbalanced excitation. (R, = O, w =
0.25 cm, a = b= 0.75 cm, dl =dz =1.0 cm, N= 8, M=16, (,1 = C,z =
[,3 =1.)

propagation wave number kz(cm- 1)

Fig. 9. Dispersion characteristics of the structure shown in Fig. 1.
–––– balanced excitation; — unbalanced excitation. (R. = O, w =
0.25 cm, a = b =0.75 cm, dl =dz =1.0 cm, N= 8, M=16, Crl = CFq=
1, C,J =10.)

dispersion curves intersect at albout kO = 0.7 cm-1. The

cutoff wavenumbers of both mc~des are much lower than

those when the dielectric is replaced by air.

The structure shown in Fig. 1, with c1 = C2= C3= 1 and

every other signal line removed, has been studied by Rubin

and Bertoni [7] and the dispersion characteristic has been

shown in [7, fig. 8]. Apparently, the scale of the ordinate

axis in that figure is incorrect between kO = 2, and 3.

Instead of reproducing the dispersion curve for the same

structure, Fig. 10 shows the dispersion characteristic for

c~ = 10. Both the balanced and unbalanced modes are very

different from the TEM propagation at the frequency

range of interest.
Fig. 11 shows the dispersion characteristic of the struc-

ture shown in Fig. 3. This structure consists of two dielec-

tric layers with c*I = 10 and 6~z= 4 while the total thick-

ness of the dielectric regions remains the same as in the

structure shown in Fig. 1. We observe that the cutoff
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Fig. 10. Dispersion characteristics of the structure shown in Fig. 1 with
every other line removed. –––– balanced excitation; — unbal-

anced excitation. (R, = O, w = 0.25 cm, a = b = 0.75 cm, dl = 1.0 cm,
CL2= 2.0 cm, N= 8, M=32, C,l = 6,3 =1, C,z =1 O.)
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Fig. 11. Dispersion characteristics of the structure shown in Fig. 3.
–––– bafanced excitation; ——— unbalanced excitation ( R$ = O, w =
0.25 cm, a = b= 0.75 cm, dl =dz =1.0 cm, N= 8, M=16, 6,1=(,3 =
1, E,zl =10, C,22=4, t21= 0.4 cm, rzz = 0.1 cm.)

wavenumbers for the balanced and unbalanced modes are

higher than those shown in Fig. 9. We also note that more

eigenvalues can be found for (37) for higher operating

frequency after the balanced or unbalanced modes are cut

off. These eigenvalues correspond to the higher order

propagating modes and need further investigation.

Side-by-side coupling between two adjacent signal lines
depicted in Fig. 6 has been studied and the results in terms

of coupling length are tabulated in Table I. Good agree-

ment with the results from Rubin and Bertoni [7] is

obtained.

The dispersion characteristics of parallel signal lines

embedded in a multilayered structure in the presence of a

periodically perforated ground plane have been analyzed.

In this analysis, the spectral Green’s function tensor is

derived using the spectral-domain immitance approach in

TABLE I
NORMALIZED COUPLING LENGTH AT ,kO= 0.001 CM

LA2Lz-1’kz’kbI

~
Unit cell of Fig. 6 (a) In free space. (b) Signaf lines and perforated

ground plane are supported by two-layered dielectric as shown in Fig. 3.
C,l = c,3 =1, c,zl =10, c,22 = 4, r21= 0.4 cm, and tzz = 0.1 cm.

conjunction with the transfer matrix method to account

for the multilayered medium. Rooftop basis functions and

Galerkin testing procedures are employed, resulting in

rapidly convergent, doubly infinite series for the eigen-

value problem which determines the propagation constant

of the structure. It has been shown that the dispersion

characteristics, as well as the cutoff wavenumbers, for both

the balanced and unbalanced excitations of the signal lines

strongly depend on the dielectric materials which support

the signal lines and the perforated ground plane.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

l&FEMNc3ES

A. J. Blodgett, Jr., “Microelectronic packaging,” Sci. .4rsrer., pp.
86–97, July 1983.
T. Itoh and R. Mittra, “A technique for computing dispersion
characteristics of shielded microstrip lines,” IEEE Tram. A41cro-

waue Theoty Tech., vol. MTT-22, pp. 896–898, Oct. 1974.
T, Itoh, “Analysis of rnicrostrip resonators,” IEEE Trans. Mzcro-
waue Theoty Tech., vol. MT’P22, pp. 946–952, NOV. 1974.
T. Itoh, “ Spectraf domain immitance approach for dispersion char-
acteristics of generalized printed transmission lines,” IEEE Trans.
Mzcrowave Theoty Tech., vol. MTT-28, pp. 733-736, July 1980.

L. P. Schmidt and T. Itoh, “ Spectraf domain analysis of dominant

and higher order modes in finfine,” IEEE Trans. Muowaue Theo~
Tech., vol. MTT-28, pp. 981-985, Sept. 1980.
E. G. Farr, C, H. Chan, and R. Mittra, “A frequency-dependent
coupled-mode analysis of multiconductor microstrip lines with

application to VLSI interconnection problems,” IEEE Trans. M~-
crowaue Theo~ Tech., vol. MTI-34, pp. 307–310, Feb. 1986.
B. J. Rubin and H. L. Bertoni, “Waves gtuded by conductive strips
above a periodically perforated ground plane,” IEEE Trans. Mlcro-
waue Theory Tech., vol. MTT-31, pp. 541–549, July 1983.

B. J. Rubin, “The propagation characteristics of sigrraf hnes in a
mesh-plane environment,” IEEE Trans. Microwave Theory Tech.,

vol. MTT-32, pp. 522–531, May 1984.
C. H. Chan and R. Mittra, “On the analysis of frequency selective
surfaces using subdomain basis functions,” to be pubhshed in
IEEE Trans. A ntenmr Propagat.
P. M, van den Berg, W. J. @ijsen, and A. Venema, “The electrlc-
field problem of an interdigital transducer in a multdayered struc-
ture,’” IEEE Trans. Microwave Theoty Tech., vol. MIT33, Feb.
1985.
C. H. Chan and R. Mrttra, “Analysn of MMIC structures using an
efficient iterative approach,” IEEE Trans. M~crowave Theoiy Tech.,
vol. 36, pp. 96–105, JarL 1988.

VI. CONCLUSIONS

Chi Hou Chan (S’86-M87) was born in Macao on April 16, 1959. He
attended Hong Kong Polytechnic and the City College of New York.



CHAN AND MITTRA : PROPAGATION CHARACTEtUSTICS OF SIGNAL ‘LINES

He received the B.S. and M.S. degrees in electri-
cal engineering from the Ohio State University,
Columbus, OH, in 1981 and 1982, respectively,
and the Ph.D. degree in electrical engineering
from the University of Illinois, Urbana, IL, in
1987.

From 1981 to 1982, he was a Graduate Re-
search Associate at the ElectroScience Labora-
tory, Ohio State University. Since August 1982,
he has been with the Electromagnetic Communi-
cation Laboratory in the Department of Electri-

cal and Computer Engineering at the University of Illinois, where he is
presently a Visiting Assistant Professor. His research interests include
numerical techniques in electromagnetic, scattering from electrically
large bodies, frequency-selective surfaces, microwave integrated circuits,
high-speed digitaf circuits, and integrated optics.

975

Raj Mittra (S’54--M57-SM69-F’71) is the Di-
rector of the Electromagnetic Communication
Laboratory of the Electrical and Computer En-
gineering Department and Research Professor of
the Coordinated Science Laboratory at the UrIE
versity of Illinois. He is a Past-President of AP-S.
He serves as a consultant to several industrial
and governmental organizations in the United
States.

His professional interests include the areas of
analytical and ccmuuter-aided electromametics.

high-speed digital circuits, ra’dar scattering, ~atellite antennas, mic~owave
and millimeter-wave integrated circuits, frequency-selective surfaces, EMB
and EMC analysis, and interaction of electromagnetic waves with biologi-
cal media,


